Tripeptidyl Peptidase II Regulates Sperm Function by Modulating Intracellular Ca2+ Stores via the Ryanodine Receptor
نویسندگان
چکیده
Recent studies have identified Ca(2+) stores in sperm cells; however, it is not clear whether these Ca(2+) stores are functional and how they are mobilized. Here, in vitro and in vivo, we determined that tripeptidyl peptidase II antagonists strongly activated the cAMP/PKA signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation. We demonstrated that in the absence of Ca(2+), TPIII antagonists elevated the intracellular Ca(2+) levels in sperm, resulting in a marked improvement in sperm movement, capacitation, acrosome reaction, and the in vitro fertilizing ability. This antagonist-induced release of intracellular Ca(2+) could be blocked by the inhibitors of ryanodine receptors (RyRs) which are the main intracellular Ca(2+) channels responsible for releasing stored Ca(2+). Consistent with these results, indirect immunofluorescence assay using anti-RyR antibodies further validated the presence of RyR3 in the acrosomal region of mature sperm. Thus, TPPII can regulate sperm maturation by modulating intracellular Ca(2+) stores via the type 3 RyR.
منابع مشابه
Sphingosine releases Ca2+ from intracellular stores via the ryanodine receptor in sea urchin egg homogenates.
Various reports have demonstrated that the sphingolipids sphingosine and sphingosine-1-phosphate are able to induce Ca2+ release from intracellular stores in a similar way to second messengers. Here, we have used the sea urchin egg homogenate, a model system for the study of intracellular Ca2+ release mechanisms, to investigate the effect of these sphingolipids. While ceramide and sphingosine-1...
متن کاملRegulation of mouse egg activation: presence of ryanodine receptors and effects of microinjected ryanodine and cyclic ADP ribose on uninseminated and inseminated eggs.
Sperm-induced activation of mammalian eggs is associated with a transient increase in Ca2+ concentrations thought to be derived from inositol 1,4,5-trisphosphate-sensitive and -insensitive intracellular stores. Whereas the importance of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores has been evaluated, the identity and role of inositol 1,4,5-trisphosphate-insensitive stores are poorly under...
متن کاملA cytosolic sperm protein factor mobilizes Ca2+ from intracellular stores by activating multiple Ca2+ release mechanisms independently of low molecular weight messengers.
Ca2+ oscillations can be induced in mammalian eggs and somatic cells by microinjection of a cytosolic sperm protein factor. The nature of the sperm factor-induced Ca2+ signaling was investigated by adding sperm protein extracts to homogenates of sea urchin eggs, which contain multiple classes of Ca2+ release mechanisms. We show that the sperm factor mobilizes Ca2+ from non-mitochondrial Ca2+ st...
متن کاملTransient release of calcium from inositol 1,4,5-trisphosphate-specific stores regulates mouse preimplantation development.
Inositol 1,4,5-trisphosphate can regulate growth and differentiation by modulating the release of intracellular Ca2+ in a variety of cellular systems, and it is involved in oocyte activation. Recent studies suggest that mammalian preimplantation development may also be regulated by the release of Ca2+ from intracellular stores. The rate of cavitation and cell division was accelerated after a tr...
متن کاملTripeptidyl peptidase II promotes fat formation in a conserved fashion.
Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013